有界性:闭区间上的连续函数在该区间上一定有界。最值性:闭区间上的连续函数在该区间上一定能取得最大值和最小值。介值性:若f(a)=A,f(b)=B,且A≠B。则对A、B之间的任意实数C,在开区间(a,b)上至少有一点c,使f(c)=C。
有界性
所谓有界是指,存在一个正数M,使得对于任意x∈[a,b],都有|f(x)|≤M。
证明:利用致密性定理:有界的数列必有收敛子数列。
最值性
所谓最大值是指,[a,b]上存在一个点x0,使得对任意x∈[a,b],都有f(x)≤f(x0),则称f(x0)为f(x)在[a,b]上的最大值。最小值可以同样作定义,只需把上面的不等号反向即可。
介值性
这个性质又被称作介值定理,其包含了两种特殊情况:
(1)零点定理。也就是当f(x)在两端点处的函数值A、B异号时(此时有0在A和B之间),在开区间(a,b)上必存在至少一点ξ,使f(ξ)=0。
(2)闭区间上的连续函数在该区间上必定取得最大值和最小值之间的一切数值。
一致连续性
闭区间上的连续函数在该区间上一致连续。
所谓一致连续是指,对任意ε>0(无论其多么小),总存在正数δ,当区间I上任意两个数x1、x2满足|x1-x2|<δ时,有|f(x1)-f(x2)|<ε,就称f(x)在I上是一致连续的。
对于连续性,在自然界中有许多现象,如气温的变化,植物的生长等都是连续地变化着的。这种现象在函数关系上的反映,就是函数的连续性。简单地说,如果一个函数的图像你可以一笔画出来,整个过程不用抬笔,那么这个函数就是连续的。
dna水解后得到的产物是什么
时间:2023-09-16 21:0:39invention可数吗
时间:2023-09-13 09:0:04地球大气层从低到高依次是
时间:2023-09-18 07:0:54宇文新州之懿范句式
时间:2023-09-21 15:0:08
李清照声声慢写作背景2023-09-14 06:38:06
李广是什么朝代的将军2023-09-14 20:42:19
江苏高考排名在53350的物理类考生能报什么大学(原创)2025-05-23 15:13:29
北京高考排名在3400的考生能报什么大学(原创)2025-05-23 15:12:17
重庆安全技术职业学院的大数据技术专业分数线(附2020-最低分排名怎么样)2025-05-23 15:10:52
河南高考排名在3800的理科类考生能报什么大学(原创)2025-05-23 15:09:29
豫章师范学院在吉林预估录取分数线多少分2025-05-23 15:07:57
广西高考排名在62900的文科类考生能报什么大学(原创)2025-05-23 15:06:39
山西大同大学和西南财经大学天府学院哪个好 分数线排名对比2025-05-23 15:05:32
江西高考排名在26450的文科类考生能报什么大学(原创)2025-05-23 15:04:01
湖南铁道职业技术学院的城市轨道交通机电技术专业分数线(附2020-最低分排名怎么样)2025-05-23 15:02:28
四川商务职业学院的信息安全技术应用专业分数线(附2020-最低分排名怎么样)2025-05-23 15:00:56
山东高考排名在264200的考生能报什么大学(原创)2025-05-23 14:59:30
哈尔滨金融学院在江苏录取分数线是多少?最低位次排名2025-05-23 14:58:00 


