当前位置:高考升学网 > 高考问答 > 正文

求数列前n项和的方法

更新:2023-09-14 09:43:33 高考升学网

数列前n项和求解的七种方法为:倒序相加法、公式法、裂项相消法、错位相减法、迭加法、分组求和法、构造法。这七种方法可以结合实际情况进行合理选择。

一、用倒序相加法求数列的前n项和

如果一个数列{an},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”

二、用公式法求数列的前n项和

对等差数列等比数列,求前n项和Sn可直接用等差等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。

三、用裂项相消法求数列的前n项和

裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。

四、用错位相减法求数列的前n项和

错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。即若在数列{an?bn}中,{an}成等差数列,{bn}成等比数列,在和式的两边同乘以公比,再与原式错位相减整理后即可以求出前n项和。

五、用迭加法求数列的前n项和

迭加法主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an,从而求出Sn。

六、用分组求和法求数列的前n项和

所谓分组求和法就是对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差等比或常见的数列,然后分别求和,再将其合并。

七、用构造法求数列的前n项和

所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的前n项和。

最新图文

dna水解后得到的产物是什么

时间:2023-09-16 21:0:39

invention可数吗

时间:2023-09-13 09:0:04

地球大气层从低到高依次是

时间:2023-09-18 07:0:54

宇文新州之懿范句式

时间:2023-09-21 15:0:08